Our knowledge base consists of our collection of original technical research articles produced by our experienced staff within the R&D stage of product development.
HAYAH Insurance recently partnered with Kidbrooke® to build engaging, self-service investment journeys with OutRank®, the financial simulation engine driving HAYAH’s new goals-based financial planning experiences. HAYAH Insurance, established in 2008 and headquartered in Abu Dhabi, is the UAE’s newest and most exciting insurance company, specialising in life and medical insurance and savings products. Here HAYAH Insurance talk about the exciting partnership they have embarked upon with Kidbrooke.
Skandia, the Swedish life insurance company, has ramped up its initiatives in using technology to improve the overall experience of its customers. The goal is simple – developing a digital space to offer touchpoints relevant and meaningful enough to drive engagement across all of Skandia’s channels.
Today’s case study examines a real-life experience of a Swedish family who struggled to receive adequate help from the local wealth management service providers.
Skandia strives to build communication channels in a digital space that would match the physical experiences in engagement levels and even improve the service quality in a way that has not been achievable before.
Welcome to our brand-new series describing the elements of digital financial experiences you can build using OutRank API!
Fredrik Daveus, CEO at Kidbrooke®, explores how to build trust in digital wealth management for the Swiss WealthTech Landscape Report 2021 by The Wealth Mosaic.
The financial guidance and advice services, which constitute the life insurer’s core business, were among the first to go through the transformation. Joakim Pettersson, the digital strategy and innovation lead at Skandia, believes that digitalisation is “the only way to scale financial advisory services”.
Evida began its path as a family office managing a wide range of assets for wealthy families. Initially, the Swedish financial advisor outsourced the management of equity and fixed income positions to other parties. However, the combination of their interest for factor-based investments and dissatisfaction with wealth management services provided by the largest banks in Sweden, Switzerland and Luxembourg convinced Evida to build their own digital advisory service.
In this article series we present a machine learning-based approach to solving a common problem in financial modelling where one is faced with the task of estimating the value of a function which requires a significant amount of computation to evaluate. More specifically a function that corresponds to a so called nested simulation aimed at for example estimating a capital requirement for a financial institution or the risk associated with a structured product for a retail investor.
In this article series, we present a machine learning-based approach to solving a common problem in financial modelling where one is faced with the task of estimating the value of a function which requires a significant amount of computation to evaluate. More specifically, a function that corresponds to a so-called nested simulation aimed at, for example, estimating a capital requirement for a financial institution or the risk associated with a structured product for a retail investor.
In the third and the final part of our “Portfolio Construction” article series, the findings of the previous sections are applied to a broader and more realistic set of assets to evaluate the performance of the proposed methods against more conventional techniques.
The modern wealth management industry still relies on the 50-year-old approaches to portfolio management, widely popularized by Markowitz's Modern Portfolio Theory (1952). Despite heavy criticism within the academic circles, the alternative methods remain undeservingly overlooked in practice. In the context of the modern leap for hyper-customization, we look into one of the alternatives to Modern Portfolio Theory in greater detail - the Utility-based approach.
The second part of the “Portfolio Construction”-series explores whether introducing parameter uncertainty to the model would improve the out-of-sample performance of the optimal portfolio. Additionally, the article proposes and tests two adjustments to regular utility optimisation.
There is a number of challenges associated with portfolio construction based on historical data. This three-part article series explores some of the most common issues attributed to the model-based portfolio optimization: the sensitivity to changes in data, large variations in portfolio weights and the bad out-of-sample performance.
As machine learning methods grow in use and popularity, we explore yet another dimension of wealth management that our experts consider fit for applying such frameworks. In this article, we deploy hierarchical clustering to find more consistent ways of predicting the relative future performance of funds.
Machine learning applications have become more prominent in the financial industry in recent years. Our new article series is exploring the benefits and challenges of using self-normalising neural networks (SNNs) for calculating liquidity risk. The first piece of the series introduces the main concepts used in the investigative case study for the Swedish bond market.
In the third and concluding article in the ALM using LMSC series, we focus on analyzing the optimal asset allocations in the context of changing asset classes as well as finding the optimal allocation by maximizing the risk-adjusted net asset value. The estimates based on the LSMC method are then compared to the estimates obtained from the full nested Monte Carlo method.
The second part of the series exploring the use of Least Squares Monte Carlo in Asset and Liability Management is focused on evaluation of accuracy and performance of this method in comparison to full nested Monte Carlo simulation benchmarks.
In the first part of the ”Asset and Liability Management using LSMC” article series, we outline an ALM framework based on a replicating portfolio approach along with a suitable financial objective. This ALM framework, albeit simplified, is constructed to provide a straightforward replication of the complex interactions between assets and liabilities. Moreover, a brief introduction to the LSMC method used to generate all underlying risk factors is presented.
This article will discuss why it is important to model credit indices and detail a number of different approaches to this problem.
In this article, we evaluate the rolling window procedure to alleviate the problem of inadequate data by increasing the number of observations extracted from a limited set of data.
In this part we evaluate the framework by performing simulations and discuss the implications of utilizing a dependence model like this.
In this article we seek to develop a model allowing for dependence between equity and credit risk.
Part I of III describing a framework for analysing dependency between equity and credit risk.
In this article we conduct a case study of the operational risk capital requirement, with the ambition of comparing it with the Solvency II Standard Formula.
In this article we investigate the performance of the LSMC approach on a stylised financial product.
We will in this article give an introduction to operational risk, and explain the subject as it is defined in Basel II.
In this article we will introduce an efficient way of estimating and calibrating regression functions in a LSMC environment.
In this part we introduce a recognised technique for sophisticated risk modelling, Least-Squares Monte Carlo.